WARF questions relevancy of documents used to uphold patent challenge
The original nano workout -- Helping carbon nanotubes get into shape

Aluminum foil lamps outshine incandescent lights

CHAMPAIGN, Ill. -- Researchers at the University of Illinois are developing panels of microcavity plasma lamps that may soon brighten people’s lives. The thin, lightweight panels could be used for residential and commercial lighting, and for certain types of biomedical applications.

“Built of aluminum foil, sapphire and small amounts of gas, the panels are less than 1 millimeter thick, and can hang on a wall like picture frames,” said Gary Eden, a professor of electrical and computer engineering at the U. of I., and corresponding author of a paper describing the microcavity plasma lamps in the June issue of the Journal of Physics D: Applied Physics.

Like conventional fluorescent lights, microcavity plasma lamps are glow-discharges in which atoms of a gas are excited by electrons and radiate light. Unlike fluorescent lights, however, microcavity plasma lamps produce the plasma in microscopic pockets and require no ballast, reflector or heavy metal housing. The panels are lighter, brighter and more efficient than incandescent lights and are expected, with further engineering, to approach or surpass the efficiency of fluorescent lighting.

Full story.