LED street lights expand Ruud Lighting’s market
Medical College Physician and Bioethicist Arthur R. Derse Honored By American Society for Bioethics and Humanities

Compressor-free refrigerator may loom in the future

  Thursday, August 7, 2008

University Park, Pa. -- Refrigerators and other cooling devices may one day lose their compressors and coils of piping and become solid state, according to Penn State researchers who are investigating electrically induced heat effects of some ferroelectric polymers.

"This is the first step in the development of an electric field refrigeration unit," says Qiming Zhang, distinguished professor of electrical engineering. "For the future, we can envision a flat panel refrigerator. No more coils, no more compressors, just solid polymer with appropriate heat exchangers."

Other researchers have explored magnetic field refrigeration, but electricity is more convenient.

Zhang, working with Bret Neese, graduate student, materials science and engineering; postdoctoral fellows Baojin Chu and Sheng-Guo Lu; Yong Wang, graduate student, and Eugene Furman, research associate, looked at ferroelectric polymers that exhibit temperature changes at room temperature under an electrical field. These polarpolymers include poly(vinylidene fluoride-trifluoroethylene) and poly(vinylidene fluoride-trifluoroethylene)-chlorofluoroethylene, however there are other polarpolymers that exhibit the same effect.

Conventional cooling systems, -- refrigerators or air conditioners -- rely on the properties of gases to cool and most systems use the change in density of gases at changing pressures to cool. The coolants commonly used are either harmful to people or the environment. Freon, one of the fluorochlorocarbons banned because of the damage it did to the ozone layer, was the most commonly used refrigerant. Now, a variety of coolants is available. Nevertheless, all have problems and require energy-eating compressors and lots of heating coils.

Zhang's approach uses the change form disorganized to organized that occurs in some polarpolymers when placed in an electric field. The natural state of these materials is disorganized with the various molecules randomly positioned. When electricity is applied, the molecules become highly ordered and the material gives off heat and becomes colder. When the electricity is turned off, the material reverts to its disordered state and absorbs heat.

Full story.

Please visit our sponsor Gehrke & Associates, SC to learn more about how to enhance and defend your intellectual property.  Thank you.