Nano-infused paint can detect strain
Northwestern Researchers Create “Rubber-Band Electronics”

Rewriting Quantum Chips with a Beam of Light

Laser Technique Developed by CCNY and Berkeley Researchers Brings Ultrafast Computing Closer to Reality

The promise of ultrafast quantum computing has moved a step closer to reality with a technique to create rewritable computer chips using a beam of light. Researchers from The City College of New York (CCNY) and the University of California Berkeley (UCB) used light to control the spin of an atom’s nucleus in order to encode information.

The technique could pave the way for quantum computing, a long-sought leap forward toward computers with processing speeds many times faster than today’s. The group published their results on June 26 in “Nature Communications.”

Current electronic devices are approaching the upper limits in processing speed, and they rely on etching a pattern into a semiconductor to create a chip or integrated circuit. These patterns of interconnections serve as highways to shuttle information around the circuit, but there is a drawback.

“Once the chip is printed, it can only be used one way,” explained Dr. Jeffrey Reimer, UCB professor of chemical and biomolecular engineering and the study co-author.

The team – including CCNY Professor of Physics Carlos Meriles and PhD graduate students Jonathan King of UCB and Yunpu Li of CCNY– saw a remedy for these problems in the emerging sciences of spintronics and quantum computing.

They have developed a technique to use laser light to pattern the alignment of “spin” within atoms so that the pattern can be rewritten on the fly. Such a technique may one day lead to rewritable spintronic circuits.

Full story.

Please visit our sponsor Gehrke & Associates, SC to learn more about how to enhance and defend your intellectual property.  Thank you.