Previous month:
December 2012
Next month:
February 2013

Institute of Bioengineering and Nanotechnology, IBM reveal new antimicrobial hydrogel

Researchers from IBM (NYSE: IBM) and the Institute of Bioengineering and Nanotechnology revealed today an antimicrobial hydrogel that can break through diseased biofilms and completely eradicate drug-resistant bacteria upon contact. The synthetic hydrogel, which forms spontaneously when heated to body temperature, is the first-ever to be biodegradable, biocompatible and non-toxic, making it an ideal tool to combat serious health hazards facing hospital workers, visitors and patients.

Traditionally used for disinfecting various surfaces, antimicrobials can be found in traditional household items like alcohol and bleach. However, moving from countertops to treating drug resistant skin infections or infectious diseases in the body are proving to be more challenging as conventional antibiotics become less effective and many household surface disinfectants are not suitable for biological applications.

IBM Research and its collaborators developed a remoldable synthetic antimicrobial hydrogel, comprised of more than 90% water, which, if commercialized, is ideal for applications like creams or injectable therapeutics for wound healing, implant and catheter coatings, skin infections or even orifice barriers.

Full story.


Nanotech patent jungle set to become denser in 2013

17 January 2013

Simon Hadlington

As we welcome in 2013, will nanotechnology continue to dominate many of the scientific headlines in the coming year, just as it has done over the past decade? The huge activity across nanotechnology in recent years, reflected in an ever-increasing number of patents, suggests that it will.

In 2012 the US patent office published some 4000 patents under its class ‘977 – nanotechnology’. This was a record, up from 3439 the previous year, 2770 in 2010 and 1449 in 2009.

Do these figures herald an exciting dawn of technological innovation based around components measured at the atomic and molecular scale? Emphatically not and on the contrary, argues Joshua Pearce, who runs the Open Sustainability Technology lab at Michigan Technological University in the US. The problem is that in the rush to patent potentially lucrative new discoveries, a forest of broad and overlapping patents have been filed around the world by commercial and academic researchers. If someone wishes to develop a new product that uses single-walled carbon nanotubes, for example, there is a dense ‘thicket’ of hundreds of patents to be negotiated.

Full story.


Court lifts cloud over embryonic stem cells

But research on induced stem cells may be the real winner.

Monya Baker

15 January 2013

he US Supreme Court’s decision last week to throw out a lawsuit that would have blocked federal funding of all research on human embryonic stem cells cleared the gloom that has hung over the field for more than three years. Yet the biggest boost from the decision might go not to work on embryonic stem (ES) cells, but to studies of their upstart cousins, induced pluripotent stem (iPS) cells, which are created by ‘reprogramming’ adult cells into a stem-cell-like state.

At first glance, iPS-cell research needs no help. Researchers flocked to the field soon after a recipe for deriving the cells from adult mouse cells was announced in 2006, partly because this offered a way to skirt the thorny ethical issues raised by extracting cells from human embryos. But the real allure of iPS cells was the promise of genetically matched tissues. Adult cells taken from a patient could be used to create stem cells that would, in turn, generate perfectly matched specialized tissues — replacement neurons, say — for cell therapy. Although the number of published papers from iPS-cell research has not yet caught up with that of ES-cell work (see ‘Inducing a juggernaut’), US funding for each approach is now roughly matched at about US$120 million a year.

But, as iPS cells crop up in ever more labs, ES cells — generally cheaper, better behaved and backed by an extra decade’s worth of data — promise to have an important supporting role. Ever since iPS cells were described, researchers have been trying to understand just how similar they are to ES cells. iPS cells begin with different patterns of gene expression, and they can also acquire mutations during the reprogramming process, which means that every iPS cell must be thoroughly evaluated before it can be used in any study. “Human ES cells will always be the standard to which other cells will be compared,” says Roger Pedersen, who studies how stem cells retain embryo-like states at the University of Cambridge, UK.

Full story.


UWM's Innovation Campus lands major office project; 350 jobs planned

Privately financed building adds momentum to satellite campus in Wauwatosa

By Tom Daykin of the Journal Sentinel

When University of Wisconsin-Milwaukee officials began working on plans for a satellite campus in Wauwatosa, they pitched the idea as a way to create partnerships between academia and business.

On Wednesday, four years of work led to an announcement of the first privately financed development at Innovation Campus. And that news could help attract more projects.

ABB Inc. plans to develop its new Milwaukee-area headquarters at Innovation Campus, bringing 350 jobs to that location. The three-story, 95,000-square-foot building will be located on three acres in the western portion of the business park, which is east of Highway 45, between W. Watertown Plank Road and Swan Blvd.

Full story.