Wisconsin doctor's invention could benefit patients, investors

By Kathleen Gallagher of the Journal Sentinel

Nearly 10 years ago, Bradley Glenn, a Green Bay doctor, saw a need for a less-invasive way to deliver chemotherapy, antibiotics and nutrients to his patients.

His solution has become the core of a small Wisconsin start-up that is aiming to deliver a big payday to investors.

Stealth Therapeutics Inc. on Tuesday will begin a trial at two Wisconsin health care organizations to determine the best potential market for the company's Invisiport, a vascular access port that is implanted under the skin in a patient's arm.

"Our goal is to use the results from the study to ramp up use of the Invisiport throughout the country," said Sam Adams, Stealth's general manager. "Future commercial success will help us to create a return for our shareholders."

In essence, the study is intended to show potential acquirers how much value the device could add to their product mix, said Ken Johnson, a director of Stealth and the managing director of Kegonsa Capital Partners. Kegonsa is a major investor in Stealth, which has raised a total of $3.35 million, Adams said.

Full story

Please visit our sponsor Gehrke & Associates, SC to learn more about how to enhance and defend your intellectual property.  Thank you.

Elastic Gel to Heal Wounds

A team of bioengineers at Brigham and Women’s Hospital (BWH), led by Ali Khademhosseini, PhD, and Nasim Annabi, PhD, of the Biomedical Engineering Division, has developed a new protein-based gel that, when exposed to light, mimics many of the properties of elastic tissue, such as skin and blood vessels. In a paper published in Advanced Functional Materials, the research team reports on the new material’s key properties, many of which can be finely tuned, and on the results of using the material in preclinical models of wound healing.

“We are very interested in engineering strong, elastic materials from proteins because so many of the tissues within the human body are elastic. If we want to use biomaterials to regenerate those tissues, we need elasticity and flexibility,” said Annabi, a co-senior author of the study. “Our hydrogel is very flexible, made from a biocompatible polypeptide and can be activated using light.”

Full story

Please visit our sponsor Gehrke & Associates, SC to learn more about how to enhance and defend your intellectual property.  Thank you.

Research Paves Path for Hybrid Nano-Materials That Could Replace Human Tissue or Today's Pills

Brooklyn, New York—A team of researchers has uncovered critical information that could help scientists understand how protein polymers interact with other self-assembling biopolymers. The research helps explain naturally occurring nano-material within cells and could one day lead to engineered bio-composites for drug delivery, artificial tissue, bio-sensing, or cancer diagnosis.

Results of this study, “Bionanocomposites: Differential Effects of Cellulose Nanocrystals on Protein Diblock Copolymers,” were recently published in the American Chemical Society’s BioMacromolecules. The findings were the result of a collaborative research project from the Polytechnic Institute of New York University (NYU-Poly) Montclare Lab for Protein Engineering and Molecular Design under the direction of Associate Professor of Chemical and Biomolecular Engineering Jin K. Montclare.

Bionanocomposites provide a singular area of research that incorporates biology, chemistry, materials science, engineering, and nanotechnology. Medical researchers believe they hold particular promise because—unlike the materials that build today’s medical implants, for example—they are biodegradable and biocompatible, not subject to rejection by the body’s immune defenses. As biocomposites rarely exist isolated from other substances in nature, scientists do not yet understand how they interact with other materials such as lipids, nucleic acids, or other organic materials and on a molecular level. This study, which explored the ways in which protein polymers interact with another biopolymer, cellulose, provides the key to better understanding how biocomposite materials would interact with the human body for medical applications.

Full story.

Please visit our sponsor Gehrke & Associates, SC to learn more about how to enhance and defend your intellectual property.  Thank you.

UW-Madison model of common cold virus could lead to better drugs

DAVID WAHLBERG | Wisconsin State Journal | dwahlberg@madison.com | 608-252-6125

UW-Madison scientists haven’t cured the common cold, but they may have explained why nobody has — in a discovery that could lead to better drugs against sneezes and sniffles.

Campus researchers constructed a model of rhinovirus C, a particularly problematic strain of cold virus identified just seven years ago, and showed how it differs from rhinoviruses A and B.

Rhinoviruses cause about 85 percent of colds and account for some ear and sinus infections, bronchitis, pneumonia and asthma attacks.

Drugs against rhinoviruses haven’t done well in clinical trials. That is likely because they didn’t protect against rhinovirus C, according to the new study in today’s edition of the journal Virology.

“There was always a high failure rate,” said Ann Palmenberg, a UW-Madison biochemistry professor who led the research. “The drugs didn’t work against the Cs.”

The three-dimensional model Palmenberg’s lab designed of the protein shell of rhinovirus C could help scientists find a receptor that could be targeted by new drugs, she said.

Full story.

Please visit our sponsor Gehrke & Associates, SC to learn more about how to enhance and defend your intellectual property.  Thank you.

U.S. to study whether to use genome sequencing for newborns

By Mark Johnson of the Journal Sentinel

The U.S. government has launched a $25 million program to explore the possibility of using whole genome sequencing for newborn babies, a development with the potential to transform American health care.

The five-year research program will involve reading the entire genetic scripts of some 2,000 newborns, a step that could someday lead to vast troves of electronic medical records describing the details of every person's health from day one.

Genetics experts have long discussed this futuristic possibility, but the idea came under serious discussion at the National Institutes of Health about two years ago in the wake of Nic Volker's sequencing and treatment by the Medical College of Wisconsin and Children's Hospital of Wisconsin.

Volker was 4 years old in 2009 when doctors read his genetic script and traced the cause of his disease to a single error in the sequence of 3.2 billion chemical bases. As a result of the diagnosis, Volker received an umbilical cord blood transplant that appears to have saved his life.

"We could each see that this was something looming over the horizon," said Eric D. Green, director of the National Human Genome Research Institute, whose group is collaborating with the National Institute of Child Health and Human Development on the newborn genome sequencing program.

Under the program, researchers at four institutions around the country will examine the benefits and risks of sequencing babies, looking at the accuracy and cost of the tests and the effect they would have on parents and doctors. Their efforts represent a first step into a complex world of new medical possibilities.

Full story.

Please visit our sponsor Gehrke & Associates, SC to learn more about how to enhance and defend your intellectual property.  Thank you.

Insect-inspired super rubber moves toward practical uses in medicine

The remarkable, rubber-like protein that enables dragonflies, grasshoppers and other insects to flap their wings, jump and chirp has major potential uses in medicine, scientists conclude in an article in the journal ACS Macro Letters. It evaluates the latest advances toward using a protein called resilin in nanosprings, biorubbers, biosensors and other applications.

Kristi Kiick and colleagues explain that scientists discovered resilin a half-century ago in the wing hinges of locusts and elastic tendons of dragonflies. The extraordinary natural protein tops the best synthetic rubbers. Resilin can stretch to three times its original length, for instance, and then spring back to its initial shape without losing its elasticity, despite repeated stretching and relaxing cycles. That’s a crucial trait for insects that must flap or jump millions of times over their lifetimes. Scientists first synthesized resilin in 2005 and have been striving to harness its properties in medicine.

Full story.

Please visit our sponsor Gehrke & Associates, SC to learn more about how to enhance and defend your intellectual property.  Thank you.

Steering stem cells with magnets

Quinn Eastman

July 16, 2013

Magnets could be a tool for directing stem cells’ healing powers to treat conditions such as heart disease or vascular disease.

By feeding stem cells tiny particles made of magnetized iron oxide, scientists at Emory and Georgia Tech can then use magnets to attract the cells to a particular location in a mouse's body after intravenous injection.

[...]

The type of cells used in the study, mesenchymal stem cells, are not embryonic stem cells. Mesenchymal stem cells can be readily obtained from adult tissues such as bone marrow or fat. They are capable of becoming bone, fat and cartilage cells, but not other types of cell such as muscle or brain. They secrete a variety of nourishing and anti-inflammatory factors, which could make them valuable tools for treating conditions such as cardiovascular disease or autoimmune disorders.

Full Story

Please visit our sponsor Gehrke & Associates, SC to learn more about how to enhance and defend your intellectual property.  Thank you.

Researchers create the inner ear from stem cells, opening potential for new treatments

July 10, 2013

Indiana University scientists have transformed mouse embryonic stem cells into key structures of the inner ear. The discovery provides new insights into the sensory organ's developmental process and sets the stage for laboratory models of disease, drug discovery and potential treatments for hearing loss and balance disorders.

A research team led by Eri Hashino, Ph.D., Ruth C. Holton Professor of Otolaryngology at Indiana University School of Medicine, reported that by using a three-dimensional cell culture method, they were able to coax stem cells to develop into inner-ear sensory epithelia—containing hair cells, supporting cells and neurons—that detect sound, head movements and gravity. The research was reportedly online Wednesday in the journal Nature.

Previous attempts to "grow" inner-ear hair cells in standard cell culture systems have worked poorly in part because necessary cues to develop hair bundles—a hallmark of sensory hair cells and a structure critically important for detecting auditory or vestibular signals—are lacking in the flat cell-culture dish. But, Dr. Hashino said, the team determined that the cells needed to be suspended as aggregates in a specialized culture medium, which provided an environment more like that found in the body during early development.

Full Story

Please visit our sponsor Gehrke & Associates, SC to learn more about how to enhance and defend your intellectual property.  Thank you.

Nanoparticles could power 'electronic skin' in the future

By Devin Coldewey

July 10, 2013

A new development in nanotechnology may enable "electronic skin" for robots and prosthetic limbs, offering sensitivity not just to pressure, but to humidity and temperature — and it's even flexible.

The new material is developed by chemical engineers at the Israel Institute of Technology, who found that a certain type of gold nanoparticle changed how it conducted electricity based on pressure.

These nanoparticles are only 5-8 nanometers in diameter, comprising a gold core and a spiky, protective outer layer. When sandwiched into a special film, the way that film is bent or pressed may cause the nanoparticles to spread out or bunch together, changing how well electricity passes between them.

Full Story

 

Please visit our sponsor Gehrke & Associates, SC to learn more about how to enhance and defend your intellectual property.  Thank you.

Study Challenges Long-held Assumption of Gene Expression in Embryonic Stem Cells

July 3, 2013

CAMBRIDGE, Mass. – Whitehead Institute researchers have determined that the transcription factor Nanog, which plays a critical role in the self-renewal of embryonic stem cells, is expressed in a manner similar to other pluripotency markers. This finding contradicts the field’s presumptions about this important gene and its role in the differentiation of embryonic stem cells.

A large body of research has reported that Nanog is allelically regulated—that is, only one copy of the gene is expressed at any given time—and fluctuations in its expression are responsible for the differences seen in individual embryonic stem (ES) cells’ predilection to differentiate into more specialized cells. These studies relied on cells that had a genetic marker or reporter inserted in the DNA upstream of the Nanog gene. This latest research, published in this week’s edition of the journal Cell Stem Cell, suggests that results from studies based on this approach could be called into question.

To quantify the variations in Nanog expression, Dina Faddah, a graduate student in the lab of Whitehead Institute Founding Member Rudolf Jaenisch, looked at hundreds of individual mouse ES cells with reporters inserted immediately downstream of the Nanog gene. One Nanog allele had a green reporter, while the other had a red reporter, allowing Faddah to determine which of the two alleles was being expressed.

Full Story

 

Please visit our sponsor Gehrke & Associates, SC to learn more about how to enhance and defend your intellectual property.  Thank you.