Oil spill cleanup by sponge: Madison scientists tout tidy technology

By Thomas Content of the Journal Sentinel

In a development arising from nanotechnology research, scientists in Madison have created a spongelike material that could provide a novel and sustainable way to clean up oil spills.

It's known as an aerogel, but it could just as well be called a "smart sponge."

To demonstrate how it works, researchers add a small amount of red dye to diesel, making the fuel stand out in a glass of water. The aerogel is dipped in the glass and within minutes, the sponge has soaked up the diesel. The aerogel is now red, and the glass of water is clear.

"It was very effective," said Shaoqin "Sarah" Gong, who runs a biotechnology-nanotechnology lab at the Wisconsin Institute for Discovery in Madison.

"So if you had an oil spill, for example, the idea is you could throw this aerogel sheet in the water and it would start to absorb the oil very quickly and efficiently," said Gong, a University of Wisconsin-Madison associate professor of biomedical engineering. "Once it's fully saturated, you can take it out and squeeze out all the oil."

The material's absorbing capacity is reduced somewhat after each use, but the product "can be reused for a couple of cycles," Gong said.

Full story.

Please visit our sponsor Gehrke & Associates, SC to learn more about how to enhance and defend your intellectual property.  Thank you.

Research Paves Path for Hybrid Nano-Materials That Could Replace Human Tissue or Today's Pills

Brooklyn, New York—A team of researchers has uncovered critical information that could help scientists understand how protein polymers interact with other self-assembling biopolymers. The research helps explain naturally occurring nano-material within cells and could one day lead to engineered bio-composites for drug delivery, artificial tissue, bio-sensing, or cancer diagnosis.

Results of this study, “Bionanocomposites: Differential Effects of Cellulose Nanocrystals on Protein Diblock Copolymers,” were recently published in the American Chemical Society’s BioMacromolecules. The findings were the result of a collaborative research project from the Polytechnic Institute of New York University (NYU-Poly) Montclare Lab for Protein Engineering and Molecular Design under the direction of Associate Professor of Chemical and Biomolecular Engineering Jin K. Montclare.

Bionanocomposites provide a singular area of research that incorporates biology, chemistry, materials science, engineering, and nanotechnology. Medical researchers believe they hold particular promise because—unlike the materials that build today’s medical implants, for example—they are biodegradable and biocompatible, not subject to rejection by the body’s immune defenses. As biocomposites rarely exist isolated from other substances in nature, scientists do not yet understand how they interact with other materials such as lipids, nucleic acids, or other organic materials and on a molecular level. This study, which explored the ways in which protein polymers interact with another biopolymer, cellulose, provides the key to better understanding how biocomposite materials would interact with the human body for medical applications.

Full story.

Please visit our sponsor Gehrke & Associates, SC to learn more about how to enhance and defend your intellectual property.  Thank you.

Nanoparticles could power 'electronic skin' in the future

By Devin Coldewey

July 10, 2013

A new development in nanotechnology may enable "electronic skin" for robots and prosthetic limbs, offering sensitivity not just to pressure, but to humidity and temperature — and it's even flexible.

The new material is developed by chemical engineers at the Israel Institute of Technology, who found that a certain type of gold nanoparticle changed how it conducted electricity based on pressure.

These nanoparticles are only 5-8 nanometers in diameter, comprising a gold core and a spiky, protective outer layer. When sandwiched into a special film, the way that film is bent or pressed may cause the nanoparticles to spread out or bunch together, changing how well electricity passes between them.

Full Story

 

Please visit our sponsor Gehrke & Associates, SC to learn more about how to enhance and defend your intellectual property.  Thank you.

Institute of Bioengineering and Nanotechnology, IBM reveal new antimicrobial hydrogel

Researchers from IBM (NYSE: IBM) and the Institute of Bioengineering and Nanotechnology revealed today an antimicrobial hydrogel that can break through diseased biofilms and completely eradicate drug-resistant bacteria upon contact. The synthetic hydrogel, which forms spontaneously when heated to body temperature, is the first-ever to be biodegradable, biocompatible and non-toxic, making it an ideal tool to combat serious health hazards facing hospital workers, visitors and patients.

Traditionally used for disinfecting various surfaces, antimicrobials can be found in traditional household items like alcohol and bleach. However, moving from countertops to treating drug resistant skin infections or infectious diseases in the body are proving to be more challenging as conventional antibiotics become less effective and many household surface disinfectants are not suitable for biological applications.

IBM Research and its collaborators developed a remoldable synthetic antimicrobial hydrogel, comprised of more than 90% water, which, if commercialized, is ideal for applications like creams or injectable therapeutics for wound healing, implant and catheter coatings, skin infections or even orifice barriers.

Full story.

Please visit our sponsor Gehrke & Associates, SC to learn more about how to enhance and defend your intellectual property.  Thank you.

Nanotech patent jungle set to become denser in 2013

17 January 2013

Simon Hadlington

As we welcome in 2013, will nanotechnology continue to dominate many of the scientific headlines in the coming year, just as it has done over the past decade? The huge activity across nanotechnology in recent years, reflected in an ever-increasing number of patents, suggests that it will.

In 2012 the US patent office published some 4000 patents under its class ‘977 – nanotechnology’. This was a record, up from 3439 the previous year, 2770 in 2010 and 1449 in 2009.

Do these figures herald an exciting dawn of technological innovation based around components measured at the atomic and molecular scale? Emphatically not and on the contrary, argues Joshua Pearce, who runs the Open Sustainability Technology lab at Michigan Technological University in the US. The problem is that in the rush to patent potentially lucrative new discoveries, a forest of broad and overlapping patents have been filed around the world by commercial and academic researchers. If someone wishes to develop a new product that uses single-walled carbon nanotubes, for example, there is a dense ‘thicket’ of hundreds of patents to be negotiated.

Full story.

Please visit our sponsor Gehrke & Associates, SC to learn more about how to enhance and defend your intellectual property.  Thank you.

Nano-infused paint can detect strain

Mike Williams

Rice University’s fluorescent nanotube coating can reveal stress on planes, bridges, buildings A new type of paint made with carbon nanotubes at Rice University can help detect strain in buildings, bridges and airplanes.

The Rice scientists call their mixture “strain paint” and are hopeful it can help detect deformations in structures like airplane wings. Their study, published online this month by the American Chemical Society journal Nano Letters details a composite coating they invented that could be read by a handheld infrared spectrometer.

This method could tell where a material is showing signs of deformation well before the effects become visible to the naked eye, and without touching the structure. The researchers said this provides a big advantage over conventional strain gauges, which must be physically connected to their read-out devices. In addition, the nanotube-based system could measure strain at any location and along any direction.

Rice chemistry professor Bruce Weisman led the discovery and interpretation of near-infrared fluorescence from semiconducting carbon nanotubes in 2002, and he has since developed and used novel optical instrumentation to explore nanotubes’ physical and chemical properties.

Full story.

Please visit our sponsor Gehrke & Associates, SC to learn more about how to enhance and defend your intellectual property.  Thank you.

Nanotechnology could recover energy

WEST LAFAYETTE, Ind., April 17 (UPI) -- U.S. researchers say a new technique could harvest energy from hot pipes or engine components to recover energy wasted in factories, power plants and cars.

Scientists at Purdue University say they've used nanotechnology techniques to coat glass fibers with a new "thermoelectric" material they developed.

When thermoelectric materials are heated on one side, electrons flow to the cooler side, generating an electrical current.

Fibers treated in this manner could be wrapped around industrial pipes in factories and power plants, as well as on car engines and automotive exhaust systems, to recapture much of the wasted energy, the researchers said.

Full story.

Please visit our sponsor Gehrke & Associates, SC to learn more about how to enhance and defend your intellectual property.  Thank you.

Nanotube therapy takes aim at breast cancer stem cells

WINSTON-SALEM, N.C. – Feb. 9, 2012 – Wake Forest Baptist Medical Center researchers have again proven that injecting multiwalled carbon nanotubes (MWCNTs) into tumors and heating them with a quick, 30-second laser treatment can kill them.

The results of the first effort involving kidney tumors was published in 2009, but now they've taken the science and directed it at breast cancer tumors, specifically the tumor initiating cancer stem cells. These stem cells are hard to kill because they don't divide very often and many anti-cancer strategies are directed at killing the cells that divide frequently.

The Wake Forest Baptist research findings are reported online ahead of April print publication in the journal Biomaterials. The research is a result of a collaborative effort between Wake Forest School of Medicine, the Wake Forest University Center for Nanotechnology and Molecular Materials, and Rice University. Lead investigator and professor of biochemistry Suzy V. Torti, Ph.D., of Wake Forest Baptist, said the breast cancer stem cells tend to be resistant to drugs and radiotherapy, so targeting these particular cells is of great interest in the scientific community.

"They are tough. These are cells that don't divide very often. They just sort of sit there, but when they receive some sort of trigger – and that's not really well understood – it's believed they can migrate to other sites and start a metastasis somewhere else," Torti explained. "Heat-based cancer treatments represent a promising approach for the clinical management of cancers, including breast cancer."

Link to the study.

Please visit our sponsor Gehrke & Associates, SC to learn more about how to enhance and defend your intellectual property.  Thank you.

A Single Cell Endoscope Berkeley Lab Researchers Use Nanophotonics for Optical Look Inside Living Cells

An endoscope that can provide high-resolution optical images of the interior of a single living cell, or precisely deliver genes, proteins, therapeutic drugs or other cargo without injuring or damaging the cell, has been developed by researchers with the U.S. Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab). This highly versatile and mechanically robust nanowire-based optical probe can also be applied to biosensing and single-cell electrophysiology.

A team of researchers from Berkeley Lab and the University of California (UC) Berkeley attached a tin oxide nanowire waveguide to the tapered end of an optical fibre to create a novel endoscope system. Light travelling along the optical fibre can be effectively coupled into the nanowire where it is re-emitted into free space when it reaches the tip. The nanowire tip is extremely flexible due to its small size and high aspect ratio, yet can endure repeated bending and buckling so that it can be used multiple times.

Full story.

Please visit our sponsor Gehrke & Associates, SC to learn more about how to enhance and defend your intellectual property.  Thank you.

Carbon nanotube muscles generate giant twist for novel motors

Twist per muscle length is over a thousand times higher than for previous artificial muscles and the muscle diameter is ten times smaller than a human hair.

New artificial muscles that twist like the trunk of an elephant, but provide a thousand times higher rotation per length, were announced on Oct. 13 for a publication in Science magazine by a team of researchers from The University of Texas at Dallas, The University of Wollongong in Australia, The University of British Columbia in Canada, and Hanyang University in Korea.

These muscles, based on carbon nanotubes yarns, accelerate a 2000 times heavier paddle up to 590 revolutions per minute in 1.2 seconds, and then reverse this rotation when the applied voltage is changed. The demonstrated rotation of 250 per millimeter of muscle length is over a thousand times that of previous artificial muscles, which are based on ferroelectrics, shape memory alloys, or conducting organic polymers. The output power per yarn weight is comparable to that for large electric motors, and the weight-normalized performance of these conventional electric motors severely degrades when they are downsized to millimeter scale.

These muscles exploit strong, tough, highly flexible yarns of carbon nanotubes, which consist of nanoscale cylinders of carbon that are ten thousand times smaller in diameter than a human hair. Important for success, these nanotubes are spun into helical yarns, which means that they have left and right handed versions (like our hands), depending upon the direction of rotation during twisting the nanotubes to make yarn. Rotation is torsional, meaning that twist occurs in one direction until a limiting rotation results, and then rotation can be reversed by changing the applied voltage. Left and right hand yarns rotate in opposite directions when electrically charged, but in both cases the effect of charging is to partially untwist the yarn.

Unlike conventional motors, whose complexity makes them difficult to miniaturize, the torsional carbon nanotube muscles are simple to inexpensively construct in either very long or millimeter lengths. The nanotube torsional motors consist of a yarn electrode and a counter-electrode, which are immersed in an ionically conducting liquid. A low voltage battery can serve as the power source, which enables electrochemical charge and discharge of the yarn to provide torsional rotation in opposite directions. In the simplest case, the researchers attach a paddle to the nanotube yarn, which enables torsional rotation to do useful work – like mixing liquids on "micro-fluidic chips" used for chemical analysis and sensing.

The mechanism of torsional rotation is remarkable. Charging the nanotube yarns is like charging a supercapacitor - ions migrate into the yarns to electrostatically balance the electronic charge electrically injected onto the nanotubes. Although the yarns are porous, this influx of ions causes the yarn to increase volume, shrink in length by up to a percent, and torsionally rotate. This surprising shrinkage in yarn length as its volume increases is explained by the yarn's helical structure, which is similar in structure to finger cuff toys that trap a child's fingers when elongated, but frees them when shortened.

Nature has used torsional rotation based on helically wound muscles for hundreds of millions of years, and exploits this action for such tasks as twisting the trunks of elephants and octopus limbs. In these natural appendages, helically wound muscle fibers cause rotation by contracting against an essentially incompressible, bone-less core. On the other hand, the helically wound carbon nanotubes in the nanotube yarns are undergoing little change in length, but are instead causing the volume of liquid electrolyte within the porous yarn to increase during electrochemical charging, so that torsional rotation occurs.

The combination of mechanical simplicity, giant torsional rotations, high rotation rates, and micron-size yarn diameters are attractive for applications, such as microfluidic pumps, valve drives, and mixers. In a fluidic mixer demonstrated by the researchers, a 15 micron diameter yarn rotated a 200 times larger radius and 80 times heavier paddle in flowing liquids at up to one rotation per second.

"The discovery, characterization, and understanding of these high performance torsional motors shows the power of international collaborations", said Ray H. Baughman, a corresponding author of the author of the Science article and Robert A. Welch Professor of Chemistry and director of The University of Texas at Dallas Alan G. MacDiarmid NanoTech Institute. "Researchers from four universities in three different continents that were born in eight different countries made critically important contributions."

Continue reading "Carbon nanotube muscles generate giant twist for novel motors" »

Please visit our sponsor Gehrke & Associates, SC to learn more about how to enhance and defend your intellectual property.  Thank you.

Researchers' quest for gold

Scientists study element as nanoparticle, effect on female reproductive tract

By Kelly Hogan of the Journal Sentinel

July 18, 2011

For University of Wisconsin-Milwaukee researchers studying the toxicity of gold nanoparticles - a minuscule material with potentially big biomedical applications - the road to a new medical advance may or may not be paved with gold.

These ultrafine metallic particles, which are 1/80,000th the diameter of a human hair, hold great promise for treating diseases as diverse as cancer, diabetes or AIDS, but scientists must prove that new ways to treat disease will do no harm.

Reinhold Hutz, a professor of biological sciences at UWM, and graduate student Jeremy Larson are investigating whether gold nanoparticles target and disrupt the female reproductive tract - the only research of its kind in the United States.

Gold nanoparticles range in size from 1 to 100 nanometers; a nanometer is about one-billionth the size of a yardstick. Noting the remarkable scale of nanoparticles, Larson put the particles in perspective: "If a nanoparticle were the size of a football, a virus would be the size of a person."

What distinguishes nanoparticles from particles of other sizes is their unique physical and chemical properties. The compatibility of other biological molecules with gold nanoparticles, for example, renders them prime candidates for tissue-specific drug delivery.

Full story.

Please visit our sponsor Gehrke & Associates, SC to learn more about how to enhance and defend your intellectual property.  Thank you.

Researchers inject nanofiber spheres carrying cells into wounds to grow tissue

ANN ARBOR, Mich.—For the first time, scientists have made star-shaped, biodegradable polymers that can self-assemble into hollow, nanofiber spheres, and when the spheres are injected with cells into wounds, these spheres biodegrade, but the cells live on to form new tissue.

Developing this nanofiber sphere as a cell carrier that simulates the natural growing environment of the cell is a very significant advance in tissue repair, says Peter Ma, professor at the University of Michigan School of Dentistry and lead author of a paper about the research scheduled for advanced online publication in Nature Materials. Co-authors are Xiaohua Liu and Xiaobing Jin.

Full story.

Please visit our sponsor Gehrke & Associates, SC to learn more about how to enhance and defend your intellectual property.  Thank you.

Virus-mimicking nanoparticles can stimulate long lasting immunity

Emory postdoctoral fellow Sudhir Pai Kasturi, PhD, created tiny particles studded with molecules thatturn on Toll‑like receptors. He worked with colleague Niren Murthy, PhD, associate professor in the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University.

Vaccine scientists say their “Holy Grail” is to stimulate immunity that lasts for a lifetime. Live viral vaccines such as the smallpox or yellow fever vaccines provide immune protection that lasts several decades, but despite their success, scientists have remained in the dark as to how they induce such long lasting immunity.

Scientists at the Emory Vaccine Center have designed tiny nanoparticles that resemble viruses in size and immunological composition and that induce lifelong immunity in mice. They designed the particles to mimic the immune‑stimulating effects of one of the most successful vaccines ever developed – the yellow fever vaccine. The particles, made of biodegradable polymers, have components that activate two different parts of the innate immune system and can be used interchangeablywith material from many different bacteria or viruses.

The results are described in this week’s issue of Nature.

“These results address a long‑standing puzzle in vaccinology: how do successful vaccines induce longlasting immunity?” says senior author Bali Pulendran, PhD, Charles Howard Candler professor of pathology and laboratory medicine at Emory University School of Medicine and a researcher at Yerkes National Primate Research Center.

“These particles could provide an instant way to stretch scarce supplies when access to viral material is limited, such as pandemic flu or during an emerging infection. In addition, there are many diseases, such as HIV, malaria, tuberculosis and dengue, that still lack effective vaccines, where we anticipate that this type of immunity enhancer could play a role.”

One injection of the live viral yellow fever vaccine, developed in the 1930s by Nobel Prize winner Max Theiler, can protect against disease‑causing forms of the virus for decades. Pulendran and his colleagues have been investigating how humans respond to the yellow fever vaccine, in the hopes of imitating it.

Several years ago, they established that the yellow fever vaccine stimulated multiple Toll‑like receptors (TLRs) in the innate immune system. TLRs are present in insects as well as mammals, birds and fish. They are molecules expressed by cells that can sense bits of viruses, bacteria and parasites and can activate the immune system. Pulendran’s group demonstrated that the immune system sensed the yellow fever vaccine via multiple TLRs, and that this was required for the immunity induced by the vaccine.

“TLRs are like the sixth sense in our bodies, because they have an exquisite capacity to sense viruses and bacteria, and convey this information to stimulate the immune response,” Pulendran says. “We found that to get the best immune response, you need to hit more than one kind of Toll‑like receptor. Our aim was to create a synthetic particle that accomplishes this task.”

Emory postdoctoral fellow Sudhir Pai Kasturi, PhD, created tiny particles studded with molecules thatturn on Toll‑like receptors. He worked with colleague Niren Murthy, PhD, associate professor in the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University.

“We are very excited about building on this platform to design improved vaccines for existing and emerging infectious diseases” says Kasturi, the primary author working in Pulendran’s lab at the Emory Vaccine Center. One of the particles’ components is MPL (monophosphoryl lipid A), a component of bacterial cell walls, and the other is imiquimod, a chemical that mimics the effects of viral RNA. The particles are made of PLGA—poly(lactic acid)‑co‑(glycolic acid)—a synthetic polymer used for biodegradable grafts and sutures.

All three components are FDA‑approved for human use individually. For several decades, the only FDA‑approved vaccine additive was alum, until a cervical cancer vaccine containing MPL was approved in 2009. Because of immune system differences between mice and monkeys, the scientists replaced imiquimod with the related chemical resiquimod for monkey experiments.

In mice, the particles can stimulate production of antibodies to proteins from flu virus or anthrax bacteria several orders of magnitude more effectively than alum, the authors found. In addition, the immune cells persist in lymph nodes for at least 18months, almost the lifetime of a mouse. In experiments with monkeys, nanoparticles with viral protein could induce robust responses greater than five times the response induced by a dose of the same viral protein given by itself, without the nanoparticles.

###

The research was supported by the National Institutes of Health and the Bill and Melinda Gates Foundation.

Reference: doi:10.1038/nature09737 S.P. Kasturi et al. Programming the magnitude and persistence of antibody responses with innateimmunity. Nature (2011).

The Robert W. Woodruff Health Sciences Center of Emory University is an academic health science and service center focusing on teaching, research, health care and public service.

Learn more about Emory’s health sciences: 
Blog: http://emoryhealthblog.com 
Twitter: @emoryhealthsci 
Web: http://emoryhealthsciences.org

 

Please visit our sponsor Gehrke & Associates, SC to learn more about how to enhance and defend your intellectual property.  Thank you.

Magical BEANs: New Nano-sized Particles Could Provide Mega-sized Data Storage

The ability of phase-change materials to readily and swiftly transition between different phases has made them valuable as a low-power source of non-volatile or “flash” memory and data storage. Now an entire new class of phase-change materials has been discovered by researchers with the Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of California (UC) Berkeley that could be applied to phase change random access memory (PCM) technologies and possibly optical data storage as well.  The new phase-change materials – nanocrystal alloys of a metal and semiconductor – are called “BEANs,” for binary eutectic-alloy nanostructures.

Full story.

Please visit our sponsor Gehrke & Associates, SC to learn more about how to enhance and defend your intellectual property.  Thank you.

Air Force Treating Wounds With Lasers and Nanotech

•By Katie Drummond •May 5, 2010

Please visit our sponsor Gehrke & Associates, SC to learn more about how to enhance and defend your intellectual property.  Thank you.

Ultrasensitive imaging method uses gold-silver 'nanocages'

WEST LAFAYETTE, Ind. - New research findings suggest that an experimental ultrasensitive medical imaging technique that uses a pulsed laser and tiny metallic "nanocages" might enable both the early detection and treatment of disease.

The system works by shining near-infrared laser pulses through the skin to detect hollow nanocages and solid nanoparticles - made of an alloy of gold and silver - that are injected into the bloodstream.

Unlike previous approaches using tiny metallic nanorods and nanospheres, the new technique does not cause heat damage to tissue being imaged. Another advantage is that it does not produce a background "auto fluorescent" glow of surrounding tissues, which interferes with the imaging and reduces contrast and brightness, said Ji-Xin Cheng (pronounced Gee-Shin), an associate professor of biomedical engineering and chemistry at Purdue University.

Full story.

Please visit our sponsor Gehrke & Associates, SC to learn more about how to enhance and defend your intellectual property.  Thank you.

UCLA researchers create 'fly paper' to capture circulating cancer cells

New method may help improve diagnosis, prognosis and treatment monitoring

Please visit our sponsor Gehrke & Associates, SC to learn more about how to enhance and defend your intellectual property.  Thank you.

Small Nanoparticles Bring Big Improvement to Medical Imaging

If you’re watching the complex processes in a living cell, it is easy to miss something important—especially if you are watching changes that take a long time to unfold and require high-spatial-resolution imaging. But new research* makes it possible to scrutinize activities that occur over hours or even days inside cells, potentially solving many of the mysteries associated with molecular-scale events occurring in these tiny living things.

A joint research team, working at the National Institute of Standards and Technology (NIST) and the National Institute of Allergy and Infectious Diseases (NIAID), has discovered a method of using nanoparticles to illuminate the cellular interior to reveal these slow processes. Nanoparticles, thousands of times smaller than a cell, have a variety of applications. One type of nanoparticle called a quantum dot glows when exposed to light. These semiconductor particles can be coated with organic materials, which are tailored to be attracted to specific proteins within the part of a cell a scientist wishes to examine.

“Quantum dots last longer than many organic dyes and fluorescent proteins that we previously used to illuminate the interiors of cells,” says biophysicist Jeeseong Hwang, who led the team on the NIST side. “They also have the advantage of monitoring changes in cellular processes while most high-resolution techniques like electron microscopy only provide images of cellular processes frozen at one moment. Using quantum dots, we can now elucidate cellular processes involving the dynamic motions of proteins.”

Full story.

Please visit our sponsor Gehrke & Associates, SC to learn more about how to enhance and defend your intellectual property.  Thank you.

Step forward for nanotechnology: Controlled movement of molecules

Scientists in the United Kingdom are reporting an advance toward overcoming one of the key challenges in nanotechnology: Getting molecules to move quickly in a desired direction without help from outside forces. The study is scheduled for the October issue of ACS Nano, a monthly journal.

Full story.

Please visit our sponsor Gehrke & Associates, SC to learn more about how to enhance and defend your intellectual property.  Thank you.

Engineers produce 'how-to' guide for controlling the structure of nanoparticles

Engineers produce 'how-to' guide for controlling the structure of nanoparticles

Engineers produce 'how-to' guide for controlling the structure of nanoparticles

Tiny objects known as nanoparticles are often heralded as holding great potential for future applications in electronics, medicine and other areas. The properties of nanoparticles depend on their size and structure. Now researchers from North Carolina State University have learned how to consistently create hollow, solid and amorphous nanoparticles of nickel phosphide, which has potential uses in the development of solar cells and as catalysts for removing sulfur from fuel. Their work can now serve as a "how-to" guide for other researchers to controllably create hollow, solid and amorphous nanoparticles – in order to determine what special properties they may have.

The study provides a step-by-step analysis of how to create solid or hollow nanoparticles that are all made of the same material. "It's been known that these structures could be made," says Dr. Joe Tracy, an assistant professor of material science engineering at NC State and co-author of the paper, "but this research provides us with a comprehensive understanding of nanostructural control during nanoparticle formation, showing how to consistently obtain different structures in the lab." The study also shows how to create solid nanoparticles that are amorphous, meaning they do not have a crystalline structure.

Tracy explains that there is a great deal of interest in the formation of hollow nanoparticles and amorphous nanoparticles. But for many kinds of nanoparticles, there had previously been no clear understanding of how to control the formation of these structures. As a result of the new study, Tracy says, "nanoparticles with desired structures can be made more consistently, making it easier for researchers to determine their electronic, optical and catalytic properties." For example, amorphous nanoparticles may be of use in future electronic applications or for nanostructure fabrication. Tracy stresses that while the NC State researchers were able to show how to create hollow nanoparticles and amorphous nanoparticles, they were not able to create nanoparticles that were both hollow and amorphous.

The study could also have implications for many additional types of nanoparticles, not just nickel phosphide. Tracy says that the findings "could provide important insights for further studies to control the structures of many other kinds of nanoparticles, with a wide array of potential applications." These could include metal oxide, sulfide, selenide and phosphide nanoparticles.

Specifically, the researchers found that they could control whether nickel phosphide nanoparticles would be hollow or solid by adjusting the ratio of phosphorus to nickel reactants when they synthesized the nanoparticles. The researchers found that they could create amorphous solid nanoparticles by controlling the temperature.

###

The study, "Nickel Phosphide Nanoparticles with Hollow, Solid, and Amorphous Structures," was co-authored by Tracy, NC State post-doctoral researcher Junwei Wang and NC State Ph.D. student Aaron Johnston-Peck. The research was funded by NC State and the National Science Foundation, and was published online by Chemistry of Materials.

Engineers produce 'how-to' guide for controlling the structure of nanoparticlesContact: Matt Shipman
matt_shipman@ncsu.edu
919-515-6386
North Carolina State University

Please visit our sponsor Gehrke & Associates, SC to learn more about how to enhance and defend your intellectual property.  Thank you.

Therapeutic Nanoparticles Give New Meaning to Sugar-Coating Medicine

A research team at NIST studying sugar-coated nanoparticles for use as a possible cancer therapy has uncovered a delicate balancing act that makes the particles more effective than conventional thinking says they should be. Just like individuals in a crowd respecting other people's personal space, the particles work because they get close together, but not too close.

Full story.

Please visit our sponsor Gehrke & Associates, SC to learn more about how to enhance and defend your intellectual property.  Thank you.

New Nanochemistry Technique Encases Single Molecules in Microdroplets

Inventing a useful new tool for creating chemical reactions between single molecules, scientists at NIST have employed microfluidics to make microdroplets that each contain a single molecules of interest. By combining this new microfluidic with techniques to merge multiple droplets, the research may ultimately lead to new information on the structure and function of important organic materials such as proteins, enzymes, and DNA.

Full story.

Please visit our sponsor Gehrke & Associates, SC to learn more about how to enhance and defend your intellectual property.  Thank you.

Using magnetism to turn drugs on and off

Many medical conditions, such as chronic pain, cancer and diabetes, require medications that cannot be taken orally, but must be dosed intermittently, on an as-needed basis, over a long period of time. Researchers at Children's Hospital Boston have devised a drug delivery solution that combines magnetism with nanotechnology.

Full article.

Please visit our sponsor Gehrke & Associates, SC to learn more about how to enhance and defend your intellectual property.  Thank you.

Nanotechnology treatment for burns reduces infection, inflammation

Treating second-degree burns with a nanoemulsion lotion sharply curbs bacterial growth and reduces inflammation that otherwise can jeopardize recovery, University of Michigan scientists have shown in initial laboratory studies. The results are reported today at the Interscience Conference for Antimicrobial Agents and Chemotherapy. 

Full story.

Please visit our sponsor Gehrke & Associates, SC to learn more about how to enhance and defend your intellectual property.  Thank you.

Nano-magnets guide stem cells to damaged tissue

Microscopic magnetic particles have been used to bring stem cells to sites of cardiovascular injury in a new method designed to increase the capacity of cells to repair damaged tissue, UCL scientists announced today.

The cross disciplinary research, published in The Journal of the American College of Cardiology: Cardiovascular Interventions, demonstrates a technique where endothelial progenitor cells – a type of stem cell shown to be important in vascular healing processes – have been magnetically tagged with a tiny iron-containing clinical agent, then successfully targeted to a site of arterial injury using a magnet positioned outside the body.

Following magnetic targeting, there was a five-fold increase in cell localisation at a site of vascular injury in rats. The team also demonstrated a six-fold increase in cell capture in an in-vitro flow system (where microscopic particles are suspended in a stream of fluid and examined to see how they behave).

Full story.

Please visit our sponsor Gehrke & Associates, SC to learn more about how to enhance and defend your intellectual property.  Thank you.

A Billion Year Ultra-Dense Memory Chip

When it comes to data storage, density and durability have always moved in opposite directions - the greater the density the shorter the durability. For example, information carved in stone is not dense but can last thousands of years, whereas today’s silicon memory chips can hold their information for only a few decades. Researchers with the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of California (UC) Berkeley have smashed this tradition with a new memory storage medium that can pack thousands of times more data into one square inch of space than conventional chips and preserve this data for more than a billion years!

This video shows an iron nanoparticle shuttle moving through a carbon nanotube in the presence of a low voltage electrical current. The shuttle’s position inside the tube can function as a high-density nonvolatile memory element. (Courtesy of Zettl Research Group) “We’ve developed a new mechanism for digital memory storage that consists of a crystalline iron nanoparticle shuttle enclosed within the hollow of a multiwalled carbon nanotube,” said physicist Alex Zettl who led this research.

“Through this combination of nanomaterials and interactions, we’ve created a memory device that features both ultra-high density and ultra-long lifetimes, and that can be written to and read from using the conventional voltages already available in digital electronics.”

Full story.

Please visit our sponsor Gehrke & Associates, SC to learn more about how to enhance and defend your intellectual property.  Thank you.

Flexible, transparent supercapacitors are latest devices from USC nanotube lab

<p>Flexible, transparent supercapacitors are latest devices from USC nanotube lab</p>

It is a completely transparent and flexible energy conversion and storage device that you can bend and twist like a poker card.

It continues a line of prototype devices created at the USC Viterbi School of Engineering that can perform the electronic operations now usually handled by silicon chips using carbon nanotubes and metal nanowires set in indium oxide films, and can potentially do so at prices competitive with those of existing technologies.

The device is a supercapacitor, a circuit component that can temporarily store large amounts of electrical energy for release when needed. A team headed by Chongwu Zhou describes it a newly-published paper on "Flexible and Transparent Supercapacitor based on Indium Nanowire / Carbon Nanotube Heterogeneous Films" in the journal Applied Physics Letters (Vol.94, Issue 4, Page 043113, 2009).

Its creators believe the device points the way to further applications, such as flexible power supply components in "e-paper" displays and conformable products.

The device stores an energy density of 1.29 Watt-hour/kilogram with a specific capacitance of 64 Farad/gram. By contrast, conventional capacitors usually have an energy density of less than 0.1 Wh/kg and a storage capacitance of several tenth millifarads.

Zhou, who holds the Jack Munushiun Early Career Chair at the USC Ming Hsieh Department of Electrical Engineering, worked with USC graduate students Po-Chiang Chen and Sawalok Sukcharoenchoke, and post-doc Guozhen Shen.

The group incorporated metal oxide nanowires with carbon nanotubes (CNTs) to form heterogeneous films and further optimized the film thickness attaching on transparent plastic substrates to maintain the mechanical flexibility and optical transparency of the supercapacitors.

Continue reading "Flexible, transparent supercapacitors are latest devices from USC nanotube lab" »

Please visit our sponsor Gehrke & Associates, SC to learn more about how to enhance and defend your intellectual property.  Thank you.

Researchers study the feasibility of brains made from carbon nanotubes

Synthetic brains are a long way from reality, but researchers at the University of Southern California, funded by the National Science Foundation, are taking the first steps to build neurons from carbon nanotubes that emulate human brain function.

"At this point we still don't know if building a synthetic brain is feasible," said Alice Parker, professor of electrical engineering. "It may take decades to realize anything close to the human brain but emulating pieces of the brain, such as a synthetic vision system or synthetic cochlea that interface successfully with a real brain may be available quite soon, and synthetic parts of the brain's cortex within decades."

The challenges to creating a synthetic brain are staggering. Unlike computer software that simulates brain function, a synthetic brain will include hardware that emulates brain cells, their amazingly complex connectivity and a concept Parker calls "plasticity," which allows the artificial neurons to learn through experience and adapt to changes in their environment the way real neurons do.

Full story.

Please visit our sponsor Gehrke & Associates, SC to learn more about how to enhance and defend your intellectual property.  Thank you.

Huge possibilities, tiny product

For UW-affiliated startup, electronic parts are no big deal

By KATHLEEN GALLAGHER
kgallagher@journalsentinel.com
Posted: June 1, 2008

Some day in the not too distant future, a TV as thin as a poster could hang on your wall.

There's a good chance, too, that a Platteville-area company, founded in part by a 17-year-old boy, will have played a critical role in creating that product.

Graphene Solutions is a 3-month-old company with a patent-pending technology that dissolves carbon nanotubes, graphene nanosheets and other materials so they can be purified and spread in a layer one atom thick.

That could pave the way for electronic components, like computer chips, that are dramatically smaller with much greater capacity.

"If you can very easily, reproducibly lay out a one-atom-thick layer of carbon, this is the new silicon," said Carl Gulbrandsen, managing director of the Wisconsin Alumni Research Foundation, or WARF, which helped the company get started. WARF is the patenting and licensing arm for the University of Wisconsin-Madison.

Graphene Solutions is applying its technology to the manufacture of graphenes like carbon nanotubes - tiny, stronger-than-steel tubes that disperse heat and conduct electricity much better than silicon. Carbon nanotubes are expected to be critical for the next generation of electronics, optics and other fields of materials science.

Full story.

Please visit our sponsor Gehrke & Associates, SC to learn more about how to enhance and defend your intellectual property.  Thank you.

Nanoparticles assemble by millions to encase oil drops

Designer 'nanobatons' could be used to trap oil, deliver drugs

HOUSTON -- May 29, 2008 -- In a development that could lead to new technologies for cleaning up oil spills and polluted groundwater, scientists at Rice University have shown how tiny, stick-shaped particles of metal and carbon can trap oil droplets in water by spontaneously assembling into bag-like sacs.

The tiny particles were found to assemble spontaneously by the tens of millions into spherical sacs as large as BB pellets around droplets of oil in water. In addition, the scientists found that ultraviolet light and magnetic fields could be used to flip the nanoparticles, causing the bags to instantly turn inside out and release their cargo -- a feature that could ultimately be handy for delivering drugs.

"The core of the nanotechnology revolution lies in designing inorganic nanoparticles that can self-assemble into larger structures like a 'smart dust' that performs different functions in the world – for example, cleaning up pollution," said lead research Pulickel Ajayan, Rice's Benjamin M. and Mary Greenwood Anderson Professor in Mechanical Engineering and Materials Science. "Our approach brings the concept of self-assembling, functional nanomaterials one step closer to reality."

Full story.

Please visit our sponsor Gehrke & Associates, SC to learn more about how to enhance and defend your intellectual property.  Thank you.

Tiny buckyballs squeeze hydrogen like giant Jupiter

Carbon cages can hold super-dense volumes of nearly metallic hydrogen

Hydrogen could be a clean, abundant energy source, but it's difficult to store in bulk. In new research, materials scientists at Rice University have made the surprising discovery that tiny carbon capsules called buckyballs are so strong they can hold volumes of hydrogen nearly as dense as those at the center of Jupiter.

The research appears on the March 2008 cover of the American Chemical Society's journal Nano Letters.

"Based on our calculations, it appears that some buckyballs are capable of holding volumes of hydrogen so dense as to be almost metallic," said lead researcher Boris Yakobson, professor of mechanical engineering and materials science at Rice. "It appears they can hold about 8 percent of their weight in hydrogen at room temperature, which is considerably better than the federal target of 6 percent."

The Department of Energy has devoted more than $1 billion to developing technologies for hydrogen-powered automobiles, including technologies to cost-effectively store hydrogen for use in cars. Hydrogen is the lightest element in the universe, and it is very difficult to store in bulk. For hydrogen cars to be competitive with gasoline-powered cars, they need a comparable range and a reasonably compact fuel system. It's estimated that a hydrogen-powered car with a suitable range will require a storage system with densities greater than those found in pure, liquid hydrogen.

Yakobson said scientists have long argued the merits of storing hydrogen in tiny, molecular containers like buckyballs, and experiments have shown that it's possible to store small volumes of hydrogen inside buckyballs. The new research by Yakobson and former postdoctoral researchers Olga Pupysheva and Amir Farajian offers the first method of precisely calculating how much hydrogen a buckyball can hold before breaking.

Full story.

Please visit our sponsor Gehrke & Associates, SC to learn more about how to enhance and defend your intellectual property.  Thank you.

Feeling the Heat: Berkeley Researchers Make Thermoelectric Breakthrough in Silicon Nanowires

Energy now lost as heat during the production of electricity could be harnessed through the use of silicon nanowires synthesized via a technique developed by researchers with the U.S. Department of Energy’s (DOE) Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of California (UC) at Berkeley. The far-ranging potential applications of this technology include DOE’s hydrogen fuel cell-powered “Freedom CAR,” and personal power-jackets that could use heat from the human body to recharge cell-phones and other electronic devices.

“This is the first demonstration of high performance thermoelectric capability in silicon, an abundant semiconductor for which there already exists a multibillion dollar infrastructure for low-cost and high-yield processing and packaging,” said Arun Majumdar, a mechanical engineer and materials scientist with joint appointments at Berkeley Lab and UC Berkeley, who was one of the principal investigators behind this research.

Full story.
Please visit our sponsor Gehrke & Associates, SC to learn more about how to enhance and defend your intellectual property.  Thank you.

Stanford's nanowire battery holds 10 times the charge of existing ones

BY DAN STOBER

Stanford researchers have found a way to use silicon nanowires to reinvent the rechargeable lithium-ion batteries that power laptops, iPods, video cameras, cell phones, and countless other devices.

The new version, developed through research led by Yi Cui, assistant professor of materials science and engineering, produces 10 times the amount of electricity of existing lithium-ion, known as Li-ion, batteries. A laptop that now runs on battery for two hours could operate for 20 hours, a boon to ocean-hopping business travelers.

Full story.

Please visit our sponsor Gehrke & Associates, SC to learn more about how to enhance and defend your intellectual property.  Thank you.

Radio Waves Fire Up Nanotubes Embedded in Tumors, Destroying Liver Cancer

Preclinical results reported by M. D. Anderson, Rice in the journal Cancer
M. D. Anderson News Release 11/01/07

Cancer cells treated with carbon nanotubes can be destroyed by non-invasive radio waves that heat up the nanotubes while sparing untreated tissue, a research team led by scientists at The University of Texas M. D. Anderson Cancer Center and Rice University has shown in preclinical experiments.

In a paper posted online ahead of December publication in the journal Cancer, researchers show that the technique completely destroyed liver cancer tumors in rabbits. There were no side effects noted. However, some healthy liver tissue within 2-5 millimeters of the tumors sustained heat damage due to nanotube leakage from the tumor.

"These are promising, even exciting, preclinical results in this liver cancer model," says senior author Steven Curley, M.D., professor in M. D. Anderson's Department of Surgical Oncology. "Our next step is to look at ways to more precisely target the nanotubes so they attach to, and are taken up by, cancer cells while avoiding normal tissue."

Targeting the nanotubes solely to cancer cells is the major challenge in advancing the therapy, Curley says. Research is under way to bind the nanotubes to antibodies, peptides or other agents that in turn target molecules expressed on cancer cells. To complicate matters, most such molecules also are expressed in normal tissue.

Full story.

Please visit our sponsor Gehrke & Associates, SC to learn more about how to enhance and defend your intellectual property.  Thank you.

Teen experimenting in fields of study

By DIANA SROKA
dsroka@journalsentinel.com
Posted: July 8, 2007

It's hard to believe Philip Streich is only 16.

Streich, a home-schooled student who lives on a farm in Platteville, already has college credit from the University of Wisconsin-Platteville and Stanford University. Although he hasn't decided on a career in science yet, last year he dedicated himself to researching nanotubes - tiny, thin cylinders of carbon.

In March, Streich won the science competition at the Badger State Science & Engineering Fair for his project "Determining Carbon Nanotubes' Thermodynamic Solubility: The Missing Link to a Practical Supermaterial?" He advanced to the Intel International Science and Engineering Fair in May in Albuquerque, N.M., and was among the three grand-prize winners, receiving a $50,000 college scholarship, about $30,000 in bonds and cash and a trip to Beijing.

Full story.


Please visit our sponsor Gehrke & Associates, SC to learn more about how to enhance and defend your intellectual property.  Thank you.

Transparent transistors to bring future displays, 'e-paper'

WEST LAFAYETTE, Ind. - Researchers have used nanotechnology to create transparent transistors and circuits, a step that promises a broad range of applications, from e-paper and flexible color screens for consumer electronics to "smart cards" and "heads-up" displays in auto windshields.The transistors are made of single "nanowires," or tiny cylindrical structures that were assembled on glass or thin films of flexible plastic.

 

"The nanowires themselves are transparent, the contacts we put on them are transparent and the glass or plastic substrate is transparent," said David Janes, a researcher at Purdue University's Birck Nanotechnology Center and a professor in the School of Electrical and Computer Engineering.

Full story.

Please visit our sponsor Gehrke & Associates, SC to learn more about how to enhance and defend your intellectual property.  Thank you.

Researchers develop buckyballs to fight allergy

RICHMOND, Va. (June 20, 2007) -- A research team has identified a new biological function for a soccer ball-shaped nanoparticle called a buckyball – the ability to block allergic response, setting the stage for the development of new therapies for allergy.

Allergic disease is the sixth leading cause of chronic disease in the United States, and while various treatments have been developed to control allergy, no cure has been found. These findings advance the emerging field of medicine known as nanoimmunology.

The researchers, from Virginia Commonwealth University and Luna Innovations Inc., a private, Roanoke, Va., research company, are the first to show that buckyballs are able to block allergic response in human cell culture experiments.

Buckyballs, or fullerenes, are nanoparticles containing 60 carbon atoms. Due to their unique structure, inertness and stability, researchers from a number of scientific fields have been investigating the tiny, hollow carbon cages to serve a variety of functions. In this study, researchers modified the buckyballs so that they were compatible with water. The new study findings were published online in the June 19 issue of the Journal of Immunology and will appear in the July 1 print issue of the journal.

Full story.

Please visit our sponsor Gehrke & Associates, SC to learn more about how to enhance and defend your intellectual property.  Thank you.

The original nano workout -- Helping carbon nanotubes get into shape

Troy, N.Y. -- Researchers at Rensselaer Polytechnic Institute have developed a new method of compacting carbon nanotubes into dense bundles. These tightly packed bundles are efficient conductors and could one day replace copper as the primary interconnects used on computer chips and even hasten the transition to next-generation 3-D stacked chips.

Theoretical studies show that carbon nanotubes, if packed closely enough together, should be able to outperform copper as an electrical conductor. But because of the way carbon nanotubes are grown – in sparse nanoscale “forests” where carbon molecules compete for growth-inducing catalysts – scientists have been unable to successfully grow tightly packed bundles.

James Jiam-Qiang Lu, associate professor of physics and electrical engineering at Rensselaer, together with his research associate Zhengchun Liu, decided to investigate how to “densify” carbon nanotube bundles after they are already grown. He detailed the results of the post-growth densification project on June 6 at the Institute of Electrical and Electronics Engineers’ International Interconnect Technology Conference (IITC) in Burlingame, Calif.

Lu’s team discovered that by immersing vertically grown carbon nanotube bundles into a liquid organic solvent and allowing them to dry, the nanotubes pull close together into a dense bundle. Lu attributes the densification process to capillary coalescence, which is the same physical principle that allows moisture to move up a piece of tissue paper that is dipped into water.

The process boosts the density of these carbon nanotube bundles by five to 25 times. The higher the density, the better they can conduct electricity, Lu said. Several factors, including nanotube height, diameter, and spacing, affect the resulting density, Liu added. How the nanotubes are grown is also an important factor that impacts the resulting shape of the densified bundles.

Images of the experiment are more striking than any “before and after” photos of the latest fad diet. In one instance, Liu started with a carbon nanotube bundle 500 micrometers in diameter, shaped somewhat like a marshmallow, and dipped it into a bath of isopropyl alcohol. As the alcohol dried and evaporated, capillary forces drew the nanotubes closer together. Van Der Waals forces, the same molecular bonds that boost the adhesion of millions of setae on gecko toes and help the lizard defy gravity, ensure the nanotubes retain their tightly packed form.

The resulting bundle shrunk to a diameter of 100 micrometers, with a 25-fold increase in density. Instead of a marshmallow, it looked more like a carpenter’s nail.

Continue reading "The original nano workout -- Helping carbon nanotubes get into shape" »

Please visit our sponsor Gehrke & Associates, SC to learn more about how to enhance and defend your intellectual property.  Thank you.

New Fabrication Technique Yields Nanoscale UV LEDs

Researchers at the National Institute of Standards and Technology (NIST), in collaboration with scientists from the University of Maryland and Howard University, have developed a technique to create tiny, highly efficient light-emitting diodes (LEDs) from nanowires. As described in a recent paper,* the fabricated LEDs emit ultraviolet light—a key wavelength range required for many light-based nanotechnologies, including data storage—and the assembly technique is well-suited for scaling to commercial production.

Light-based nanoscale devices, such as LEDs, could be important building blocks for a new generation of ultracompact, inexpensive technologies, including sensors and optical communications devices. Ultraviolet LEDs are particularly important for data-storage and biological sensing devices, such as detectors for airborne pathogens. Nanowires made of a particular class of semiconductors that includes aluminum nitride, gallium nitride and indium nitride are the most promising candidates for nanoscale LEDs. But, says NIST researcher Abhishek Motayed, “The current nanowire LEDs are created using tedious nanowire manipulation methods and one-by-one fabrication techniques, which makes them unsuitable for commercial realization.”

The NIST team used batch fabrication techniques, such as photolithography (printing a pattern into a material using light, similar to photography), wet etching and metal deposition. They aligned the nanowires using an electric field, eliminating the delicate and time-consuming task of placing each nanowire separately.

Full story.

Please visit our sponsor Gehrke & Associates, SC to learn more about how to enhance and defend your intellectual property.  Thank you.

Inexpensive “Nanoglue” Can Bond Nearly Anything Together

Troy, N.Y. — Researchers at Rensselaer Polytechnic Institute have developed a new method to bond materials that don’t normally stick together. The team’s adhesive, which is based on self-assembling nanoscale chains, could impact everything from next-generation computer chip manufacturing to energy production.

Less than a nanometer — or one billionth of a meter — thick, the nanoglue is inexpensive to make and can withstand temperatures far higher than what was previously envisioned. In fact, the adhesive’s molecular bonds strengthen when exposed to heat.

The glue material is already commercially available, but the research team’s method of treating the glue to dramatically enhance its “stickiness” and heat resistance is completely new. The project, led by Rensselaer materials science and engineering professor Ganapathiraman Ramanath, is featured in the May 17 issue of the journal Nature.

Full story.


Please visit our sponsor Gehrke & Associates, SC to learn more about how to enhance and defend your intellectual property.  Thank you.

Scientists try to harness architecture of microscopic diatoms for commercial ventures

By HARVEY BLACK

Special to the Journal Sentinel
Posted: April 15, 2007

They're dubbed "nature's nanotechnologists" - one-celled algae called diatoms that create exquisite and delicate patterns in their cell walls.

University of Wisconsin-Madison biologist Michael Sussman and his colleagues are struggling to understand these organisms, with the goal of using their designs in nanomanufacturing - producing sensors, drug delivery systems and computer chips.

These algae "make intricate designs with nano-sized features. We believe they are genetically controlled," said Sussman, a professor of biochemistry and director of the UW's Biotechnology Center. "What we are hoping is that we can genetically manipulate these designs to make patterns that we want to make rather than what the diatoms want to make."

Diatoms create their cell walls of silica, also known as silicon dioxide, by taking in silicic acid from their watery environment and transforming it into silica.

"The idea that we can use biology to improve technology is a very exciting prospect," said Virginia Armbrust, a University of Washington oceanographer.

She led a team of dozens of researchers that sequenced the genome of an ocean-dwelling diatom, T. pseudonana, in 2004.

Full story.

Please visit our sponsor Gehrke & Associates, SC to learn more about how to enhance and defend your intellectual property.  Thank you.

New solar panel design traps more light

By GREG BLUESTEIN, Associated Press Writer

Sunlight has never really caught fire as a power source, mostly because generating electricity with solar cells is more expensive and less efficient than some conventional sources.

But a new solar panel unveiled this month by the Georgia Tech Research Institute hopes to brighten the future of the energy source.

The difference is in the design. Traditional solar panels are often flat and bulky. The new design features an array of nano-towers — like microscopic blades of grass — that add surface area and trap more sunlight.

"It allows more opportunities for the photon to hit the part of the cell that creates electricity," said Jud Ready, the senior research engineer who invented the panel.

And that has resulted in a big jump in current generated. Ready said the three-dimensional panels produce about 60 times more than traditional solar cells.

But current is only half the equation. To generate electricity, a cell has to churn out voltage as well.

And so far, that's where Ready's invention has fallen short. There's still too much resistance within the cell to produce the type of electricity that's needed. But he said he'll now focus on reworking the interface to smooth out the kinks.

Full story.

Please visit our sponsor Gehrke & Associates, SC to learn more about how to enhance and defend your intellectual property.  Thank you.

Ultrathin films deliver DNA as possible gene therapy tool

Gene therapy — the idea of using genetic instructions rather than drugs to treat disease — has tickled scientists’ imaginations for decades, but is not yet a viable therapeutic method. One sizeable hurdle is getting the right genes into the right place at the right time.

Chemical and Biological Engineering Assistant Professor David Lynn and his colleagues have created ultrathin, nanoscale films composed of DNA and water-soluble polymers that allow controlled release of DNA from surfaces. When used to coat implantable medical devices, the films offer a novel way to route useful genes to exactly where they could do the most good.

Lynn has used his nanoscale films to coat intravascular stents, small metal-mesh cylinders inserted during medical procedures to open blocked arteries. While similar in concept to currently available drug-coated stents, Lynn's devices could offer additional advantages. For example, Lynn hopes to deliver genes that could prevent the growth of smooth muscle tissue into the stents, a process which can re-clog arteries, or that could treat the underlying causes of cardiovascular disease.

Full story.

Please visit our sponsor Gehrke & Associates, SC to learn more about how to enhance and defend your intellectual property.  Thank you.

New nanoscale engineering breakthrough points to hydrogen-powered vehicles

ARGONNE, Ill. (March 2, 2007) — Researchers at the U.S. Department of Energy's Argonne National Laboratory have developed an advanced concept in nanoscale catalyst engineering – a combination of experiments and simulations that will bring polymer electrolyte membrane fuel cells for hydrogen-powered vehicles closer to massive commercialization.

The results of their findings identify a clear trend in the behavior of extended and nanoscale surfaces of platinum-bimetallic alloy. Additionally, the techniques and concepts derived from the research program are expected to make overarching contributions to other areas of science well beyond the focus on electrocatalysis.

The Argonne researchers, Nenad Markovic and Vojislav Stamenkovic, published related results last month in Science and this month in Nature Materials on the behavior of single crystal and polycrystalline platinum alloy surfaces. The researchers discovered that the nanosegregated platinum-nickel alloy surface has unique catalytic properties, opening up important new directions for the development of active and stable practical cathode catalysts in fuel cells.

Full story.

Please visit our sponsor Gehrke & Associates, SC to learn more about how to enhance and defend your intellectual property.  Thank you.

Rensselaer Researchers Create World’s First Ideal Anti-Reflection Coating

New class of nanomaterials could lead to more efficient solar cells, brighter LEDs

Troy, N.Y. — A team of researchers from Rensselaer Polytechnic Institute has created the world’s first material that reflects virtually no light. Reporting in the March issue of Nature Photonics, they describe an optical coating made from the material that enables vastly improved control over the basic properties of light. The research could open the door to much brighter LEDs, more efficient solar cells, and a new class of “smart” light sources that adjust to specific environments, among many other potential applications.

Most surfaces reflect some light — from a puddle of water all the way to a mirror. The new material has almost the same refractive index as air, making it an ideal building block for anti-reflection coatings. It sets a world record by decreasing the reflectivity compared to conventional anti-reflection coatings by an order of magnitude.

A fundamental property called the refractive index governs the amount of light a material reflects, as well as other optical properties such as diffraction, refraction, and the speed of light inside the material. “The refractive index is the most fundamental quantity in optics and photonics. It goes all the way back to Isaac Newton, who called it the ‘optical density,’” said E. Fred Schubert, the Wellfleet Senior Constellation Professor of the Future Chips Constellation at Rensselaer and senior author of the paper.

Full story.

Please visit our sponsor Gehrke & Associates, SC to learn more about how to enhance and defend your intellectual property.  Thank you.

First direct electric link between neurons and light-sensitive nanoparticle films created

Development could lead to creation of an artificial retina

GALVESTON, Texas — The world's first direct electrical link between nerve cells and photovoltaic nanoparticle films has been achieved by researchers at the University of Texas Medical Branch at Galveston (UTMB) and the University of Michigan. The development opens the door to applying the unique properties of nanoparticles to a wide variety of light-stimulated nerve-signaling devices — including the possible development of a nanoparticle-based artificial retina.

Nanoparticles are artificially created bits of matter not much bigger than individual atoms. Their behavior is controlled by the same forces that shape molecules; they also exhibit the bizarre effects associated with quantum mechanics. Scientists can exploit these characteristics to custom-build new materials "from the bottom up" with characteristics such as compatibility with living cells and the ability to turn light into tiny electrical currents that can produce responses in nerves.

That's what the UTMB and Michigan researchers did, using a process devised by Michigan chemical engineering professor Nicholas Kotov, one of the authors of a paper on the research appearing in the current issue of Nano Letters. The process starts with a glass plate and then builds a layer-by-layer sandwich of two kinds of ultra-thin films, one made of mercury-tellurium nanoparticles and another of a positively charged polymer called PDDA. The scientists then added a layer of ordinary clay and a cell-friendly coating of amino acid, and placed cultured neurons on the very top.

When light shines on them, the mercury-tellurium nanoparticle film layers produce electrons, which then move up into the PDDA film layers and produce an upward-moving electrical current. "As you build up the layers of this, you get better capabilities to absorb photons and generate voltage," said UTMB research scientist Todd Pappas, lead author on the Nano Letters paper. "When the current reaches the neuron membrane, it depolarizes the cell to the point where it fires, and you get a signal in the nerve."

Continue reading "First direct electric link between neurons and light-sensitive nanoparticle films created" »

Please visit our sponsor Gehrke & Associates, SC to learn more about how to enhance and defend your intellectual property.  Thank you.

Using Nano-Magnets to Enhance Medical Imaging

Nanoscale magnets in the form of iron-containing molecules might be used to improve the contrast between healthy and diseased tissue in magnetic resonance imaging (MRI)—as long as the concentration of nanomagnets is carefully managed—according to a new report* by researchers at the National Institute of Standards and Technology (NIST) and collaborators. Molecular nanomagnets are a new class of MRI contrast agents that may offer significant advantages, such as versatility in design, over the compounds used today.

Contrast agents are used to highlight different tissues in the body or to help distinguish between healthy and diseased tissue. NIST is working with two universities and a hospital to design, produce and test nanomolecules that might make MRI imaging more powerful and easier to perform. The new paper resolves a debate in the literature by showing that iron-containing magnets just two nanometers wide, dissolved in water, do provide reasonable contrast in non-clinical MRI images—as long as the nanomagnet concentration is below a certain threshold. (A nanometer is one billionth of a meter.) Previous studies by other research groups had reached conflicting conclusions on the utility of molecular nanomagnets for MRI, but without accounting for concentration. NIST scientists, making novel magnetic measurements, were able to monitor the molecules’ decomposition and magnetic properties as the composition was varied.

Full story.

Please visit our sponsor Gehrke & Associates, SC to learn more about how to enhance and defend your intellectual property.  Thank you.

NOVEL AMES LAB COMPOSITE MAY REPLACE DEPLETED URANIUM

Nanostructured Material Offers Environmentally Safe Armor-piercing Capability

AMES, Iowa – Armor-piercing projectiles made of depleted uranium have caused concern among soldiers storing and using them. Now, scientists at the U.S. Department of Energy’s Ames Laboratory are close to developing a new composite with an internal structure resembling fudge-ripple ice cream that is actually comprised of environmentally safe materials to do the job even better.

Ames Laboratory senior scientist Dan Sordelet leads a research team that is synthesizing nanolayers of tungsten and metallic glass to build a projectile. “As the projectile goes further into protective armor, pieces of the projectile are sheared away, helping to form a sharpened chisel point at the head of the penetrator," said Sordelet. “The metallic glass and tungsten are environmentally benign and eliminate health worries related to toxicity and perceived radiation concerns regarding depleted uranium.”

Depleted-uranium-based alloys have traditionally been used in the production of solid metal, armor-piercing projectiles known as kinetic energy penetrators, or KEPs. The combination of high density (~18.6 grams per cubic centimeter) and strength make depleted uranium, DU, ideal for ballistics applications. Moreover, DU is particularly well-suited for KEPs because its complex crystal structure promotes what scientists call shear localization or shear banding when plastically deformed. In other words, when DU penetrators hit a target at very high speeds, they deform in a “self-sharpening” behavior.

Full story.

Please visit our sponsor Gehrke & Associates, SC to learn more about how to enhance and defend your intellectual property.  Thank you.

Nanopolymers make their debut

Researchers in the US have made a new class of materials called "nanopolymers" -- the first nanoscale equivalents of polymers. The breakthrough was made by Francesco Stellacci and colleagues at the Massachusetts Institute of Technology and involves introducing defects onto two opposing areas on the surface of spherical-shaped metallic nanoparticles. The resulting divalent particles are then chained together to make freestanding films (Science 315 358).

Nanoparticles are nanometre-sized collections of atoms that can be used as building blocks to make a wide variety of materials, such as supercrystals or ionic liquids. However, they lack the ability to bond along specific directions -- like atoms and molecules do -- which means they are not easily joined together to make large structures like filaments or films. This is because nanoparticles are typically coated with a capping layer to prevent further growth or clustering.

Now, Stellacci and colleagues have found a way to overcome this problem. The researchers effectively break the symmetry of the round nanoparticles by bonding two different types of ligand, such as thiol molecules, onto the poles of the spheres. The ligands on one nanoparticle are then free to bond with the ligands on the other particles so they can then be chained together to form the nanoscale equivalent of polymers (figures 1 & 2). The chaining reaction, which takes just a few hours, is very similar to way nylon polymerizes to form chains, says Stellacci.

Full story.

Please visit our sponsor Gehrke & Associates, SC to learn more about how to enhance and defend your intellectual property.  Thank you.

Nanopolymers make their debut

19 January 2007

Researchers in the US have made a new class of materials called "nanopolymers" -- the first nanoscale equivalents of polymers. The breakthrough was made by Francesco Stellacci and colleagues at the Massachusetts Institute of Technology and involves introducing defects onto two opposing areas on the surface of spherical-shaped metallic nanoparticles. The resulting divalent particles are then chained together to make freestanding films (Science 315 358).

Full story.

Please visit our sponsor Gehrke & Associates, SC to learn more about how to enhance and defend your intellectual property.  Thank you.